User Online: 3 | Timeout: 08:03Uhr ⟳ | email | BNE OS e.V.  | Info | Portal Klimabildung  | Auswahl | Logout | AAA  Mobil →
BNELIT - Datenbank zu Bildung für nachhaltige Entwicklung: wissenschaftliche Literatur und Materialien
Bildung für nachhaltige Entwicklung: wiss. Literatur und Materialien (BNELIT)
Datensätze des Ergebnisses:
Suche: Auswahl zeigen
Treffer:1
Sortierungen
1. Aufsatz in Zeitschrift
(Korrektur)Anmerkung zu einem Objekt von BNE-LITERATUR per email Dieses Objekt in Ihre Merkliste aufnehmen (Cookies erlauben!) in den Download Korb (max. 50)!
Verfasser/-in:
 
Hauptsachtitel:
Understanding the Greenhouse Effect by Embodiment – Analysing and Using Students' and Scientists' Conceptual Resources
Zeitschrift/Zeitung:
International Journal of Science Education
Z-Jahrgang:
36
Z-Heftnummer/-bez.:
2
Erscheinungsjahr:
Seite (von-bis):
277–303
Kurzinfo:
Over the last 20 years, science education studies have reported that there are very different understandings among students of science regarding the key aspects of climate change. We used the cognitive linguistic framework of experientialism to shed new light on this valuable pool of studies to identify the conceptual resources of understanding climate change. In our study, we interviewed 35 secondary school students on their understanding of the greenhouse effect and analysed the conceptions of climate scientists as drawn from textbooks and research reports. We analysed all data by metaphor analysis and qualitative content analysis to gain insight into students' and scientists' resources for understanding. In our analysis, we found that students and scientists refer to the same schemata to understand the greenhouse effect. We categorised their conceptions into three different principles the conceptions are based on: warming by more input, warming by less output, and warming by a new equilibrium. By interrelating students' and scientists' conceptions, we identified the students' learning demand: First, our students were afforded with experiences regarding the interactions of electromagnetic radiation and CO2. Second, our students reflected about the experience-based schemata they use as source domains for metaphorical understanding of the greenhouse effect. By uncovering the—mostly unconscious—deployed schemata, we gave students access to their source domains. We implemented these teaching guidelines in interventions and evaluated them in teaching experiments to develop evidence-based and theory-guided learning activities on the greenhouse effect.